

OF SHORES & SAVANNAS: EVOLUTIONARY ASPECTS OF ASF NUTRITION

Lora Iannotti, PhD E3 Nutrition Lab

Aligning the Food System for Improved Nutrition: a focus on ASF May 14, 2019

Presentation Outline

- 1. Introduction
 - E3 Nutrition Lab
 - Theories & frameworks
- 2. Evolutionary nutrition & ASF
 - Comparative anatomy: time & space
 - Generating evidence: Ecuador & Kenya
- 3. Conclusions
 - Summary
 - Other dimensions

E3 Nutrition Lab

Research to identify interventions that promote healthy growth and development in the most vulnerable populations globally, with the following criteria:

> Environmentally sustainable Evolutionarily appropriate Economically affordable

Theories & Frameworks

- Discordance theory (Eaton & Konner NEJM 1985)
 - Human genome evolved to adapt to conditions that no longer exist.
 Mismatch leading to increases in chronic diseases
- Genome-nutrition divergence (Eaton & Iannotti 2017)
 - Implications of divergence across the entire nutrition spectrum, with overlapping region of poor diet quality
- Shore-based paradigm (Cunnane & Crawford 2014)
 - Archeological evidence (e.g. shell middens) points to emergence of Homo sapiens and anthropometric differences in body and brain, driven by shorebased diets
- Savanna & Woodland theories
 - Hominin as hunter on savanna & woodland → grassy woodland (Washburn & Lancaster 1968; Stanford et al. 1999; White et al. 2009)

https://www.allaboutbirds.org/guide/Common_Gallinule/id

https://en.wikipedia.org/wiki/Egyptian_goose

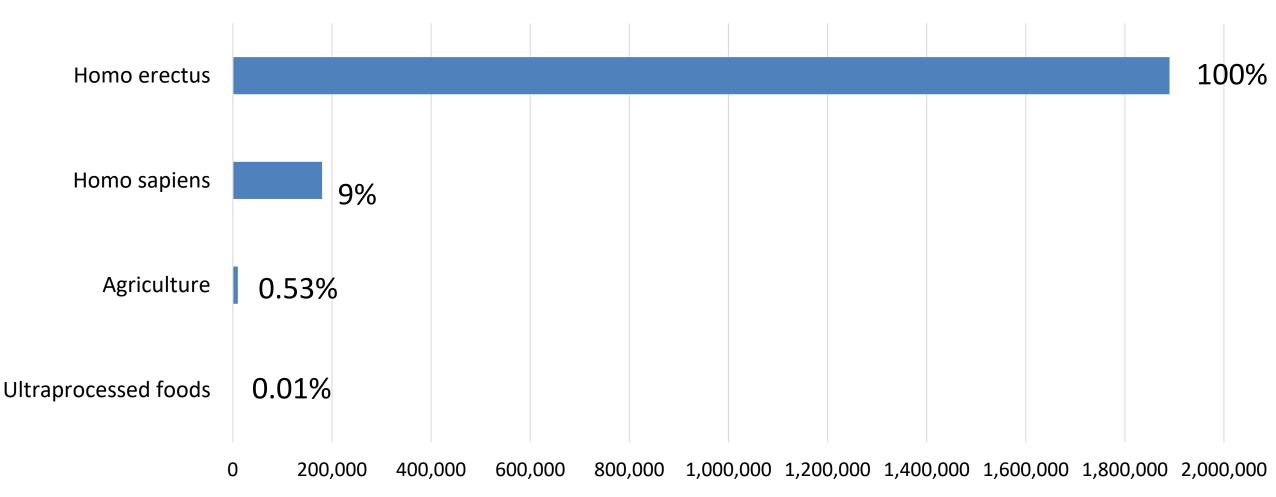
Evidence: where are the clues?

<u>PAST</u>

- Archeological evidence (Kuipers et al. Nutrition Research Reviews 2012)
- Biogeochemistry (isotope studies)
- Comparative anatomy (hominins through time)
- Physical anthropology (Leonard Physiology & Behavior 2014)

PRESENT

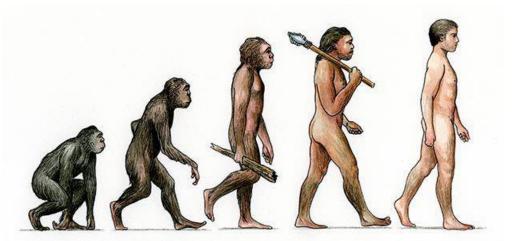
- Hunter-gather ethnographic studies (Cordain et al. *AJCN* 2000)(Eaton *World Rev Nutr Diet* 1997)(Marlowe et al. J of Human Evolution 2014)(Strohle et al. *AJCN* 2010)
- Indigenous and pastoralist communities (Iannotti and Lesorogol AJPA 2010; Gallegos et al. in process)
- Comparative anatomy with primates (Templeton 2007)
- Observational epidemiology studies (Whalen et al. AJE 2014)



Paleolithic nutrition: nutrient & food differences from today (Cordain et al. AJCN 2007; Eaton & Iannotti *Nutr Reviews* 2017)

- Protein ↑ [higher % of kcal, 30%] fish, mollusks, and crustaceans, shore bird and reptile eggs, lean game meat
- Fat ↑ [higher % of kcal, 36%, different ratios] n-6:n-3=1; DHA↑; cholesterol ↑; fish foods, game meat
- Carbohydrates ↓ [lower % of kcal, 34%] variety; tubers, fruits & vegetables, and honey; limited grains and no refined sugar
- Micronutrients 1 (greater diversity) high levels of wild fruits (e.g. berries), nuts, seaweeds and grasses
- Fiber 1 (>100 g/d compared to 20 g/d) variety of fibers, other phytochemicals, flavonoids, plant phenols
- Ultra-processed foods none

TIME: proportionality in *hominin* history



The Homo genus: anatomical differences

- Homo erectus (early hominin) ~1.8 mya
 - Anatomical differences from other *hominins* (*Australopithecus garhi* & *Homo habilis*), attributable to diet changes animal source foods in particular.

Physical Differences

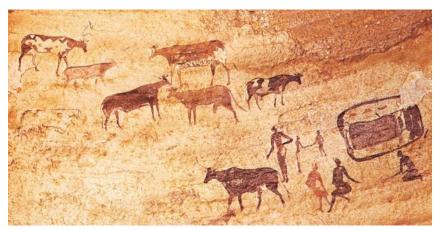
- ↑ Brain size 3x the encephalization quotient (brain mass to body mass) (Broadhurst et al. 1998)
- ↑ Taller height 15% taller (Walker 1993)
- ↑ Larger body mass
- ↑ Longer legs (bipedalism)
- ↓ Smaller teeth
- \downarrow Colon, \uparrow small intestine (>56%)

https://www.smithsonianmag.com/science-nature/the-top-ten-daily-consequences-of-having-evolved-72743121/

Brain size increase through evolution

- Encephalization quotient (EQ): brain mass to body mass
- 3.5 mya 2.0 mya Australopithicus 120% compared to Miocene hominids
- 2 mya 200,000 ya Homo erectus
 ³x compared to Australopithicus (Broadhurst et al.1998)

Theories


- Expensive tissue hypothesis (% RMR): gut \rightarrow brain (Aiello and Wheeler 1995)
- ASF/fish diet brain-selective nutrients and cooking (Cunnane et al. 2010)(Raichle, Iannotti, and Goyal 2018)(Wrangham 2009)
- Social intelligence shared resources (Dunbar 1998)(Isler and van Schaik 2012)

Advent of Agriculture (~10,000 ya): anthropometric reversions

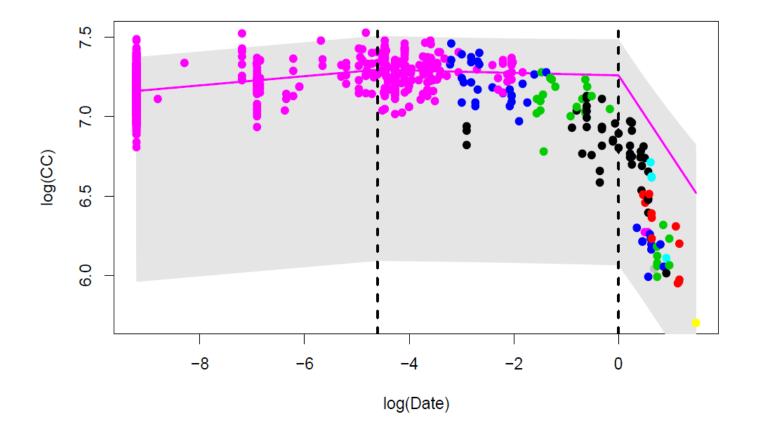
Offspring numbers increase, by at what cost?

- Life expectancy \downarrow from 40 to 20 yr
- Human height ↓
- Infection ↑
- Brain size \downarrow

http://www.britannica.com/EBchecked/media/106759/Painting-of-herdsmen-and-cattle-Tassili-n-Ajjer-Algeria

Brain size loss

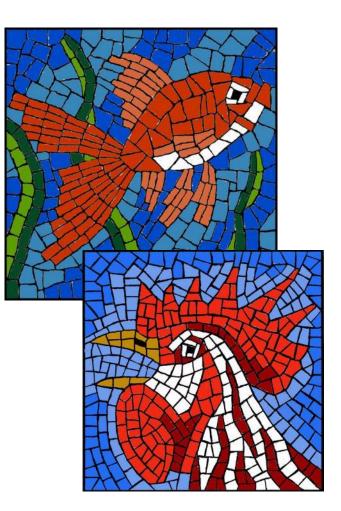
- Both absolute and relative brain size decreased, 10-35 kyr (Ruff et al. 1997; Hennenberg 1988; Hawks 2014)
- Adjusted for reductions in body mass (Hawks 2014)
- Brain size reductions highly unusual in social mammals
- Theories: group cognitive abilities lower (DeSilva et al. unpublished); ASF?



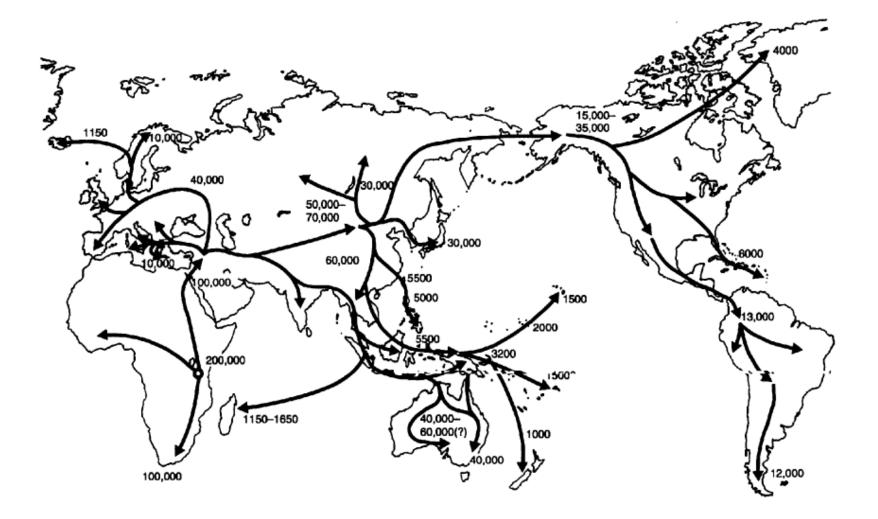
H. erectus (1.6 mya), H. heidelbergensis (300,000 ya), H. sapiens Cro-Magnon (30,000 ya;), modern H. sapiens (DeSilva et al. unpublished)

Cranial capacity in evolution, by species (DeSilva et al. unpublished)

Modern humans (fucia) Neanderthals (blue) Heidelbergs (green) *H. erectus* (black) Early *Homo/autralopiths* (red, aquamarine, etc.) *Ardipithecus* (yellow)



Mosaic Evolution & Evolutionary Life History


- Mosaic evolution refers to changes in particular body part size or function occurring at varying rates

 - Prefrontal and parietal cortices positive allometry, while somatosensory and auditory cortices have negative allometry
- Evolutionary developmental biology
 - Newer field that compares developmental processes in the life history of organisms
 - Diet-driven changes in breastfeeding & complementary feeding periods, birth spacing, age of fertility, and mortality

Geochronologic expansion of *Homo sapiens* (Strohle et al. 2010)

MILIEU MATTERS: adaptations

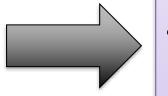
The "Not-so-Glacial Pace of Evolutionary Change" (Losos, J., Improbable Destinies 2017)

- Moths
 - Peppered moth (*Biston betularia*) from speckled gray to black
 to speckled gray in 100 years, Industrial Revolution and Clean Air Act
- © Original Artist Reproduction rights obtainable from www.CartoonStock.com

"It has nothing to do with you, Bessie. It's just that I'm lactose intolerant."

- Tilapia
 - Tilapia farmed in Lake Malawi aquaculture now black for camouflage against nets?
- Milk
 - Lactase persistence became prevalent in populations relying on dairy (e.g. Europe) in ~2,000 years

EVIDENCE



Generating evidence – E3 Nutrition Lab

EVOLUTIONARY DIET WITHIN FOOD SYSTEMS

EVOLUTIONARY DIET ELEMENTS (ASF)

- Eggs Ecuador (Lulun Project); Malawi (Mazira)
- Fish Haiti (environment), Kenya (small fisher households)
- Milk Kenya (pastoralists)

- Indigenous food systems Ecuador
- Macro-level analyses of food systems (FAO food balance sheet data)
- Future trials to test evolutionary diets across contexts

Pilot study

- Pichincha Province, Ecuador: 4 health centers
- Eligibility criteria: 18+ yr; gestational age 19-28 wk, singleton pregnancy, no complications
- Methods
 - Mixed methods: focus groups, quantitative surveys (SES, pregnancy history, dietary intakes, morbidities)
 - Ultrasound measures by trained radiologists (portable Whale P-series)
 - Standard measures head circumference, abdominal circumference, femur length, humerus length, biparietal diameter
 - Additional measures corpus callosal length, thalamic measures, cerebellar diameter, gangliothalamic ovid
 - Z scores standard measures (Saloman et al. 2006), WHO percentiles

Pilot study – Ecuador (preliminary, unpublished results)

-	Mean Z Scores (SD)			WHO Mean Percentiles (SD)		
	Male (n = 25)	Female (n = 20)	All (n = 47)	Male (n = 25)	Female (n = 20)	All Mean (n = 47)
Biparietal Diameter	-0.65 (1.00)	-1.32 (1.19)	-0.95 (1.11)	35 (27.2)	19.75 (23.4)	28.05 (26.22)
Head Circumference	0.45 (0.87)	-0.02 (1.07)	0.26 (0.97)	41 (33.4)	26.50 (24.6)	35.32 (29.9)
Abdominal Circumference	0.06 (0.86)	0.08 (1.00)	0.08 (0.90)	38 (30)	42.75 (27.3)	40.32 (28.05)
Femur Length	-0.21 (0.86)	-0.30 (1.39)	-0.22 (1.10)	39 (29.25)	46.75 (34.75)	43.51 (31.96)
Humerus Length				41.82 (28.29)	34.84 (35.64)	38.44 (30.91)
Estimated Fetal Weight				39.90 (31.75)	45.25 (33.86)	42.61 (31.76)

Regression modeling:

- measures highly correlated
- head circumference, biparietal diameter, & cerebellar diameter associated with dietary intake of evolutionary nutrition foods (seafood, eggs, roots/tubers)

Gangliothalamic ovoid diameter

Evolutionary Nutrition Trial

RCT with mixed methods

- Mixed indigenous community in peri-urban and rural regions
- Intervention: evolutionary diet 2nd & 3rd trimesters
- Social marketing components for all participants (engagement, compliance) and intervention participants (dietary diversity and no ultra-processed foods)

Outcome variables

- Primary: newborn length
- Secondary: brain regions at 21 wk, 37 wk, and birth; biomarkers of micronutrients and fatty acids at 12 & 37 wk; dietary intakes

<u>Team</u>

USFQ & Wash U \rightarrow public health nutrition, radiology, neurology, psychology/marketing, engineering, metabolomics

Brown School at Washington University in St. Louis

SecureFish Kenya

- 26% of children <5 yr stunted, but in coastal communities as high as 39%; 47% of population live below the poverty level (DHS 2014; WB 2015)
- Kenyan coastal fisheries overexploited; ↓4x in catch since 1980s (Samoilys et al. 2017)
- Fish Innovation Lab
 - The project seeks to promote <u>natural resource conservation</u> (IR1.1), <u>mitigate risk of food safety</u> (IR 1.2), and <u>improve human</u> <u>outcomes</u>, <u>specifically nutrition</u> (IR1.3). Cross-cutting themes of nutrition, gender, and resilience.

Brown School at Washington University in St. Louis

SecureFISH

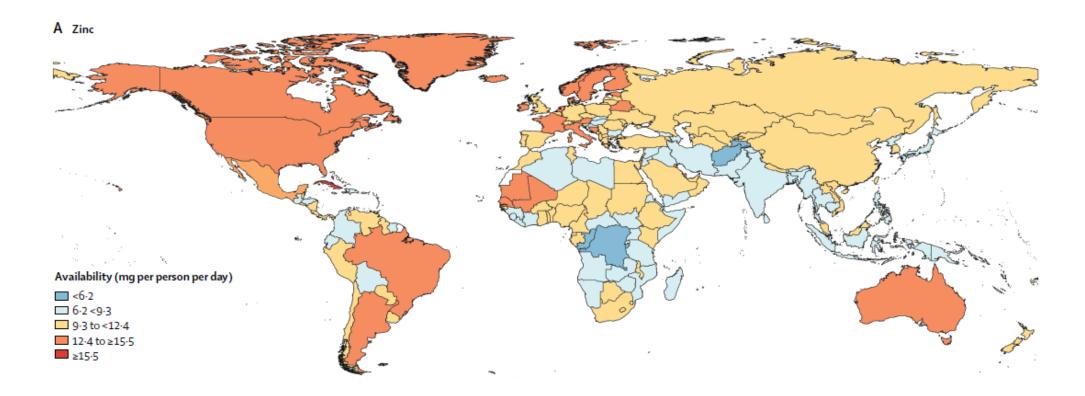
- Sampling design
 - Site inclusion criteria: proximity to *Marine Protected Area*; rural vs. urban; and county
 - 6 sites (2 villages each): Beach Management Units divided by coastal highway
 - Fishers (n=100) and non-fishers (n=100)

- Mixed methods
 - 1) Quantitative survey child diet/morbidities, child anthropometry measures
 - 2) Qualitative surveys in depth interviews with key informants (card sorts, food matrix)
 - 3) Wildlife Conservation Society data
- Partners: Wash U, University of Rhode Island, Egerton University, Pwani University, MSU

CONCLUSIONS

Summary

- Long, long history of diets that were very different from present: 99.5% of hominin past
 - − ↑ASF on shores & savannas (30-65% of kcal), but also dietary diversity
 - Capability to adapt to wide range of environments/foods
- ASF consumption likely contributor to anatomical differences in evolution
 - *H. erectus* taller, \uparrow brain size (3x EQ), etc. attributable to ASF
 - Modern *H. sapien* \downarrow brain size due to decreases in ASF, seafoods?
- Generating evidence for EN
 - E3 Nutrition Lab & others testing limiting elements of evolutionary diet (eggs, fish, other ASF)
 - Intervention trials, epidemiology studies, transdisciplinary theory development


Scaling EN – other dimensions to consider

How do we feed 7.7 billion, sustainably and well?

Nutrition disparities: zinc availability (Lancet Planetary Health series 2018)

Fish consumption, by country strata (FAO 2013):

Industrialized 26 kg/capita, Developing (18.8 kg/capita), Low-income, food-deficit countries, 7.6 kg/capita

ASF & the environment

- Move away from Anthropocene
- Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Report
 - 1 million plant & animal species threatened
 - 75% land-based & 66% marine environments significantly altered by human actions
- Respectful adaption; biome-derived diets

The One Health Triad

Evolutionarily appropriate, Economically affordable, Environmentally sustainable

